Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

HP

cho tam giác ABC có AB=12 cm, AC=16cm , BC=20cm

a. tính AH

B. chứng minh rằng AB.cosB + AC.cosC =20

H24
15 tháng 8 2017 lúc 8:35

a) Ta có \(AB^2+AC^2=400cm\); BC2=400cm=> \(\Delta ABC\) vuông tại A

Kẻ AH\(\perp\)BC

AH.BC=AB.AC=> AH.20=12.16=>AH=9,6cm

b) Ta có \(\cos b=\dfrac{HB}{AB}=\dfrac{HB}{12}=>\cos b.AB=HB\)(1) ; \(\cos c=\dfrac{HC}{AC}=\dfrac{HC}{16}=>\cos C.AC=HC\)(2)

Lấy (1)+(2) => \(\cos b.AB+\cos C.AC=HB+HC\)(3)

Mặt khác ta có HB+HC=BC=20cm(4)

Từ 3 ,4 => \(\cos b.AB+c\text{os}c.AC=20\)

Bình luận (0)

Các câu hỏi tương tự
RH
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
MH
Xem chi tiết
QV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
EN
Xem chi tiết
PL
Xem chi tiết