=> \(bd=ce\)
Từ (*) ta suy ra \(\left(b-c\right)\left(-k^2+bc-de\right)=0\)
=> \(k^2=bc-de\) (vì \(b\ne c\) ) => Điều phải chứng minh
=> \(bd=ce\)
Từ (*) ta suy ra \(\left(b-c\right)\left(-k^2+bc-de\right)=0\)
=> \(k^2=bc-de\) (vì \(b\ne c\) ) => Điều phải chứng minh
Cho tam giác ABC có BC = a, CA = b, AB = c
a) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{b^2+c^2-a^2}{2}\)
b) Chứng minh rằng : \(\overrightarrow{AB}.\overrightarrow{AC}=AI^2-\dfrac{BC^2}{4}\) với I là trung điểm của BC
c) Gọi G là trọng tâm của tam giác ABC, với M là điểm bất kì trong mặt phẳng, chứng minh hệ thức sau ;
\(MA^2+MB^2+MC^2=GA^2+GB^2+GC^2+3MG^2\)
cho tam giác ABC có A<5,3> B<-2,-1> C<-1,5 >
a, tính <AB +2BC>*AC , < AB-2BC> *BC
b, tìm tọa độ trọng tâm tam giác ABC
c, tìm tọa độ trực tâm tâm của tam giác ABC
d, tim tọa độ chân đường cao A của tam giác ABC
e, tính diện tích tam giác ABC
cho tam giác ABC có A<5,3> B<-2,-1> C<-1,5 >
a, tính <AB +2BC>*AC , < AB-2BC> *BC
b, tìm tọa độ trọng tâm tam giác ABC
c, tìm tọa độ trực tâm tâm của tam giác ABC
d, tim tọa độ chân đường cao A của tam giác ABC
e, tính diện tích tam giác ABC
Cho tam giác ABC có độ dài cạnh BC=a , AC=b , AB=c và có diện tích S . Nếu tăng cạnh BC lên 3 lần và giảm cạnh AB đi 2 lần , đồng thời giữ nguyên góc B thì khi đó diện tích diện tích tam giác mới được tạo thành bằng
Cho tam giác ABC có ba cạnh BC, AC và AB có độ dài lần lượt là a = 3, b = 4, c = 6
a) Tính côsin của góc lớn nhất của tam giác ABC
b) Tính đường cao ứng với cạnh lớn nhất
cho tam giác ABC với A<3,1> ,B<-1,-1> , C <6,0>
a, tính AB*AC
b, tính diện tích tam giác ABC
c, tìm tọa độ trực tâm H của tam giác ABC
d, tìm tọa độ trọng tâm G của tam giác ABC
e, tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC từ đó chứng minh rằng I,H,G thẳng hàng
Bài 3 : Cho nửa dduwwongf tròn tâm O đường kisnhn AB. Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy.Vẽ AD và BC vuông góc với xy
a. CMR MC = MD
b. CMR AD + BC có giá trị không đổi khi điểm M di động trên nửa đường tròn
c. CMR đường tròn đường kính CD tiếp xúc với ba đường thẳng AD,BC và AB
d. Xác định vị trí của điểm M trên nửa đường tròn (O) để cho diện tích tứ giác ABCD lớn nhất
Bìa 4 : Cho tam giác đều ABC, O là trung điểm của BC. Trên các cạnh AB,AC lần lượt lấy các điểm di động D,E sao cho ^DOE = 60o ( o là độ)
a. CMR tích BD.CE không đổi
b. CM tam giác BOD đồng dạng tam giác OED . Từ đó suy ra tia DO là tia phân giác của góc BDE
c. Vẽ đường tròn tâm O tiếp xúc với AB. CMR đường tròn này luôn tiếp xúc với DE
Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Cho tam giác ABC có BC = a, CA = b và AB = c thỏa mãn hệ thức : \(\dfrac{c}{b+a}+\dfrac{b}{a+c}=1\). Hãy tính số đo của góc A ?