1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
Cho tam giác ABC có 3 góc nhọn với các đường cao AD,BE,CF cắt nhau tại H.
a, CMR: \(\Delta AEF\sim\Delta ABC\) ; \(\frac{S_{AEF}}{S_{ABC}}=\cos^2\alpha\)
b, CMR: \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cho biết AH = k.HD. CMR: \(\tan B.\tan C=k+1\)
d, CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
cho a,b,c là 3 số thực dương thỏa mãn abc=1. Tìm GTLN của biểu thức
\(P=\frac{1}{a\left(a+bc\right)+2b\left(b+ac\right)}+\frac{1}{b\left(b+ac\right)+2c\left(c+ab\right)}+\frac{1}{c\left(c+ab\right)+2a\left(a+bc\right)}\)
Bài 1 : Với a;b;c là những số thực thỏa mãn: ab+bc+ac=abc+a+b+c
với điều kiện \(3+ab\ne2;3+bc\ne2b+c;3+ac\ne2c+a\)
CMR : \(\frac{1}{3+ab-\left(2a+b\right)}+\frac{1}{3+bc-\left(2b+c\right)}+\frac{1}{3+ac-\left(2c+a\right)}=1\)
Bài 2 : cho a,b,c>=0, chứng minh (1+a)(1+b)(1+c)>= \(\left(1+\sqrt[3]{abc}\right)^3\)
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)
Cho \(a,b,c\ge0\) và \(a^2+b^2+c^2+abc=4\) Chứng minh \(ab+bc+ca\le abc+2\)
Cho a,b>0 thỏa \(8ab-2=3\left(a^4+b^4\right)\). Tính Max P = \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{ab}{3a^2b^2+1}\)