Cho tam giác ABC nhọn có đường cao AH. Chứng minh rằng :
\(AB^2-AC^2=BH^2-CH^2\)
Bài 2: Cho tam giác ABC có AB = 5cm; BC = 12cm, AC = 13cm
a/ Chứng minh tam giác ABC vuông
b/ Vẽ đường cao BH ( H thuộc AC). Tính BH, HA, HC
c*/ Vẽ BD là tia phân giác của góc B ( D thuộc AC). Tính diện tích tam giác BAD?
Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.
a) Tìm độ dài của BH; CH; AB và AC.
b) Vẽ trung tuyến AM. Tính AM
c) Tìm diện tích của rAHM.
Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.
Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.
Bài 4: BP 2017-2018
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.
a) Tính độ dài đường cao AH và ABC của tam giác ABC.
b) Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác
Bài 5. Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC
Bài 6. (1.0 điểm)
Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
Cho tam giác ABC vuông tại A (AB > AC), đường cao AH
a) Chứng minh: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b) Biết \(\widehat{C}\) \(=60^0\), AC = 8, AB = 12. Giải tam giác HAB
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác abc, đường cao ah kẻ hm,hn lần lượt vuông góc với ab và ac a, chứng minh mb/nh = ab mũ 2 / ac mũ 2 b, chứng minh bc.bm.cn=ah mũ 3 c, chứng minh am.ab=hb.hc=mn mũ 2 d, chứng minh bm.ba+an.ac=hb.bc e, cho hb=4cm, hc=9cm tính chu vi tam giác abc và diện tích tứ giác amhn f, gọi m,n lần lượt là hình chiếu cửa h trên ab,ac chứng minh ah mũ 3 =am.an.bc g, chứng minh (ab/ac) mũ 3 = bm/cn h, chứng minh căn bậc 3 bc mũ 2 = căn bậc 3 bm mũ 2 + căn bậc 3 cn mũ 2 i, chứng minh bm.ba+cn.ca+2.bh.ch=bc mũ 2
cho tam giác ABC vuông tại A , AM là đường cao , kẻ ME vuông góc AB , MF vuông góc AC
. chứng minh AE.AB=AC^2 - AM^2
GIÚP MÌNH VỚI!!!!!
Trong tam giác ABC (AC>AB), trung tuyến AM, đường cao AH. Chứng minh rằng:
a)∠ AMB là góc nhọn, ∠AMC là góc tù
b) BH2= BM2- BM.MH + MH2; CH2= CM2 - 2CM.MH + MH2
c) AB2= AM2 + MB2- 2BM.MH; AC2= AM2 + MC2+ 2CM.MH
d)AB2+AC2 = \(\frac{BC^2}{2}\)+ 2AM2; AC2- AB2= 2BC.MH
cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC