Violympic toán 9

TO

Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O , gọi AD là đường kính của đường tròn (O) . Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E và F.

1) Chứng minh : MD2=MC.MB

2) Họi H là trung điểm của BC , qua B vẽ đường thẳng song song với MO, đường thẳng này cắt AD tại P. chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P

3) Chứng minh O là trung điểm của EF

ND
19 tháng 5 2019 lúc 16:21

Hình nè bạn

Câu a) Nối CD và DB

Xét ΔMDC và ΔMBD có góc M chung

Ta có góc MDC là góc tạo bởi tia TT và dây cung nên bằng 1/2 góc DOC. Mà góc DBC là góc nt chắn cung DC nên cx bằng 1/2 góc DOC => Góc MCD = góc MDB => ΔMDC ∼ ΔMBC (g.g)

=> \(\frac{MD}{MC}=\frac{MB}{MD}\) (Các cạnh tương ứng) => MD2=MB.MC (đpcm)

Câu b) và c) mình vẫn đang suy nghĩ nên bạn đợi chút nhaViolympic toán 9

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
DL
Xem chi tiết
HB
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
MH
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
PD
Xem chi tiết