Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
a) Vì d là tiếp tuyến của (O) tại A
⇒ OA ⊥ D mà d // d'
⇒ OA ⊥ D tại E
⇒ \(\widehat{AEB}=90^0\)
Suy ra: điểm E thuộc đường tròn đường kính AB (1)
Ta có: AF ⊥ BC ⇒ \(\widehat{AFB}=90^0\)
Suy ra: điểm F thuộc đường tròn đường kính AB (2)
Từ (1) và (2): ⇒ A, B, E, F cùng thuộc đường tròn đường kính AB
Từ đó: tam giác ABFE nội tiếp
b) Ta có: \(\widehat{ACB}=\widehat{IAB}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến cùng chắn cung AB )
Lại có: \(\widehat{ABD}=\widehat{IAB}\) ( so le trong )
⇒ \(\widehat{ABD}=\widehat{ACB}\)
Xét △ ABD và △ ACB có:
\(\widehat{ABD}=\widehat{ACB}\) ( cmt )
\(\widehat{A}\) chung
⇒ △ ABD ∼ △ ACB ( g - g )
Từ đó: \(\dfrac{AB}{AD}=\dfrac{AC}{AB}\Leftrightarrow AB^2=AC.AD\) ( đpcm )
c) Theo câu a, ta có: tam giác ABFE nội tiếp
⇒ \(\widehat{ABE}=\widehat{AFE}\) ( 2 góc nội tiếp cùng chắn cung AE )
Mà \(\widehat{ABE}=\widehat{ACB}\Rightarrow\widehat{AFE}=\widehat{ACB}\) (3)
Ta có: M là trung điểm của AB và N là trung điểm của BC
⇒ MN là đường trung bình △ ABC
⇒ MN // AC
⇒ \(\widehat{BMN}=\widehat{ACB}\) ( đồng vị ) (4)
Từ (3) và (4): \(\widehat{AFE}=\widehat{BNM}\)
Mà \(\widehat{AFE}+\widehat{NFE}=90^0\Rightarrow\widehat{BNM}+\widehat{NFE}=90^0\)
Gọi H là giao điểm của EF và MN
⇒ \(\widehat{FNH}=90^0\)
⇒ EF ⊥ MN ( đpcm )