Ôn tập cuối năm môn Đại số

NP

Cho tam giác ABC CM : Cos2A + Cos2B + Cos2C \(\ge-\dfrac{3}{2}\)

AH
29 tháng 12 2018 lúc 15:53

Lời giải:

Sử dụng các công thức lượng giác ta thực hiện biến đổi biểu thức như sau:

\(\cos 2A+\cos 2B+\cos =2\cos \frac{2A+2B}{2}\cos \frac{2A-2B}{2}+\cos ^2C-\sin ^2C\)

\(=2\cos (A+B)\cos (A-B)+2\cos ^2C-(\sin ^2C+\cos ^2C)\)

\(=2\cos (\pi -C)\cos (A-B)+2\cos ^2C-1\)

\(=2\cos ^2C-2\cos C\cos ^2(A-B)-1\)

\(=2[\cos ^2C-\cos C\cos (A-B)+\frac{1}{4}\cos ^2(A-B)]-\frac{1}{2}\cos ^2(A-B)-1\)

\(=2[\cos C-\frac{1}{2}\cos (A-B)]^2-\frac{1}{2}\cos ^2(A-B)-1\)

Ta thấy :

\(2[\cos C-\frac{1}{2}\cos (A-B)]^2\geq 0\)

\(\cos ^2(A-B)\leq 1\) (tính chất hàm cos)

\(\Rightarrow \cos 2A+\cos 2B+\cos 2C\geq 2.0-\frac{1}{2}.1-1=\frac{-3}{2}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
TT
Xem chi tiết
RK
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
MK
Xem chi tiết