a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔMKC
Suy ra: MH=MK
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔMKC
Suy ra: MH=MK
Cho tam giác ABC có góc nhọn tại A. Vẽ bên ngoài tam giác ABC các tam giác vuông cân đỉnh A là ABD và ACE. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với DE.
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Bài 2. Cho tam giác nhọn ABC, trực tâm H nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Gọi Q là hình chiếu vuông góc của H lên AD. Chứng minh PMQN là tứ giác điều hòa.
Cho tam giác ABC có góc A=90 độ và đường phân giác BH (H thuộc AC).Kẻ HM vuông góc với BC (M thuộc BC).Gọi N là giao của AB và MH .Chứng minh
a, Tam giác ABH=MBH
b,BH là trung trực của AM
c,AM//CN
d,BH vuông góc CN
e,Tam giác BNC cân
f, Gọi BH cắt NC tại M. Chúng minh M là trung điểm NC
g, HC>HM
GIÚP TUI VỚI MAI THI CUỐI KÌ 2 RÙI!!!TUI CẢM ƠN TRƯỚC NHỮNG NGƯỜI ĐÃ GIÚP TUI(quan trọng là phần e,f,g thôu còn a,b,c,d tui biết làm rùi)
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
cho tam giác ABC có góc nhọn A , D và E là 2 điểm nằm ngoài tam giac sao cho tam giác ABD và tam giác ACE vuoong cân tại A . M trung điểm BC . chứng minh AM vuông DE
cho tam giác ABC (AB<AC) trên cạnh AB và AC lấy điểm D và E sao cho BD=CE Gọi I là trung điểm của DE vẽ P sao cho I là trung điểm của BP 1)chứng minh hai tam IDP VÀ IEP bằng nhau từ đó suy ra AB//EP 2,CMR:BAC=2ECP 3,lây M là điểm bất kì trên AC xác định vị trí của M để MB+MP nhỏ nhất