1: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên MNCB là hình thang cân
1: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên MNCB là hình thang cân
Câu 16. (3,0 điểm) Cho tam giác ABC cân tại A, đường cao AM. Gọi I là trung điểm AC, K là điểm đối xứng với M qua I.
a) Chứng minh: Tứ giác MAKC là hình chữ nhật
b) Tìm điều kiện của tam giác ABC để tứ giác MAKC là hình vuông
c)Cho AB=5,BC=6 Tính diện tích hình chữ nhật MAKC
giúp mik với ạ
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là trung điểm của ab ac bc. Gọi D, E lần lượt là điểm đối xứng của P qua M và N.
a, Tính AP và diện tích tam giác ABC biết AB = 6cm, AC = 8cm.
b, Chứng minh tứ giác AMPN là hình chữ nhật.
c, Chúng minh tứ giác APCE là hình thoi.
d, Tam giác ABC cần có điều kiện gì để tứ giác APCE là hình vuông?
e, Chứng minh AP, BE, CD đồng quy.
f, Chứng minh ba điểm D, A, E thẳng hàng.
Cho tam giác ABC cân tại A,đường cao AD. Gọi E là trung điểm của AC, f là điểm đối xứng với điểm D qua E a/ tứ giác ADCF là hình gì ? Vì sao? b/ chứng minh AF = BD c/gọi N là điểm đối xứng với A qua D. Chứng minh tứ giác ABNC là hình thoi d/tìm điều kiện của tam giác ABC để hình chữ nhật ADCF là hình vuông?
Cho tam giac ABC cân tại A, có đường cao AH. Gọi I là trung điểm của AC và E là điểm đối xứng với H qua I.
1. Chứng minh rằng : AC = HE
2. Tứ giác AEHB là hình gì? Vì sao?
3. Tam giác ABC thêm điều kiện gì để tứ giác ABHI là hình thang cân.
4. Tính diện tích tứ giác AECH biết AB = 10cm, BC = 12cm.
Bài 1. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là trung điểm của AB.
a) Chứng minh tứ giác BKIC là hình thang cân.
b) Lấy N là điểm đối xứng với M qua I. Tứ giác AMCN là hình gì ? Vì sao ?
c) Chứng minh ba đường thẳng AM, BN và IK cùng đi qua một điểm.
Bài 3: Cho tam giác ABC vuông tại A (AB<AC) có M và E lần lượt là trung điểm của
BC và AC, về MD vuông góc với AB tại a) Chứng minh: MẸ // AB và tứ giác ADME là hình chữ nhật.
b) Gọi K là điểm đối xứng với M qua E. Tứ giác AMCK là hình gì? Chứng minh. c) Gọi O là giao điểm của AM và DE, H là hình chiếu của M trên AK. CM:HD\perp HE
Cho tam giác ABC cân tại A . Gọi D, E, F lần lượt là trung điểm của AB, AC , và BC
a) Chứng minh tứ giác DECF là hình bình hành.
b) Gọi K là điểm đối xứng của F qua E . Chứng minh tứ giác AKCF là hình chữ nhật.
c) Gọi H là điểm đối xứng của A qua K . Vẽ AI vuông góc CH tại I . Tính số đo KIF .
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Cho tam giác abc cân tại a,trung tuyến am,i là trung điểm ac,k là trung điểm ab,e là trung điểm am.Gọi n là điểm đối xứng của m qua i a)chứng minh akmi là hình thoi b) tứ giác amcn là hình gì?vì sao? c) chứng minh e là trung điểm bn