Chương II : Tam giác

QN

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy điểm E thuộc BM, F thuộc MC sao cho BE = CF

C/m

a) tam giác AEM = tam giác AFM

b) AM vuông góc BC

c) tam giác AEB = tam giác AFC

d) cho AB=10 cm; BC=12cm Tinh AM

NT
23 tháng 7 2020 lúc 16:28

a) Ta có: BE+EM=BM(E nằm giữa B và M)

CF+FM=CM(F nằm giữa C và M)

mà BM=CM(M là trung điểm của BC)

và BE=CF(gt)

nên EM=FM

Xét ΔABE và ΔACF có

AB=AC(ΔABC cân tại A)

\(\widehat{ABE}=\widehat{ACF}\)(hai góc ở đáy của ΔABC cân tại A)

BE=CF(gt)

Do đó: ΔABE=ΔACF(c-g-c)

⇒AE=AF(hai cạnh tương ứng)

Xét ΔAEM và ΔAFM có

AE=AF(cmt)

AM chung

EM=FM(cmt)

Do đó: ΔAEM=ΔAFM(c-c-c)

b) Xét ΔABM và ΔACM có

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

\(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)

hay AM⊥BC

c) Xét ΔABE và ΔACF có

AB=AC(ΔABC cân tại A)

\(\widehat{ABE}=\widehat{ACF}\)(hai góc ở đáy của ΔABC cân tại A)

BE=CF(gt)

Do đó: ΔABE=ΔACF(c-g-c)

d) Ta có: BM+CM=BC(M nằm giữa B và C)

mà BM=CM(M là trung điểm của BC)

nên \(BM=CM=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=10^2-6^2=64\)

hay \(AM=\sqrt{64}=8cm\)

Vậy: AM=8cm

Bình luận (0)
TG
23 tháng 7 2020 lúc 16:39

Chương II : Tam giácChương II : Tam giác

Bình luận (0)

Các câu hỏi tương tự
HG
Xem chi tiết
CH
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
HU
Xem chi tiết