kẻ phân giác AD, kẻ BK, CH ⊥ AD
Δvuông BAK có sinA=BK/AB
Δvuông CAH có sinA=HC/AC
Mà sinBAK= sinCAH= sin\(\dfrac{A}{2}\)= \(\dfrac{BK}{AB}=\dfrac{HC}{AC}=\dfrac{BK+HC}{AB+AC}\) (1)
Lại có trong Δvuông BKD và Δvuông DCH có BK<BD,HC<DC(cạnh góc vuông< cạnh huyền)=>BK+HC<BD+DC=BC (2)
Từ (1) và (2) ta có:
\(\dfrac{BK+HC}{AB+AC}< \dfrac{BD+DC}{AB+AC}\) hay \(sin\dfrac{A}{2}< \dfrac{a}{b+c}\)
Áp dụng bđt cosi ta có \(b+c\ge2\sqrt{bc}\Leftrightarrow\dfrac{a}{b+c}\le\dfrac{a}{2\sqrt{bc}}\)
Vậy \(sin\dfrac{A}{2}< \dfrac{a}{2\sqrt{bc}}\)