Cho tam giác ABC có 3 góc nhọn, AB < AC và 3 đường cao AD,BE,CF cùng đi qua điểm H. Gọi (S) là đường tròn ngoại tiếp tam giác DEF
1, CM đường tròn (S) đi qua trung điểm của đoạn thẳng AH
2, Gọi M,N lần lượt là giao điểm của đường tròn (S) với các đoạn BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt đường thẳng MN tại T. CM đường thẳng HT song song với EF
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác ABC đều nội tiếp đường tròn tâm O, gọi H là trung điểm của BC. Trên các cạnh AB; AC lần lượt lấy hai điểm D; E sao cho góc DHE=60 độ. Lấy M bất kì trên cung nhỏ AB.
a. Chưnứg minh 3 đường phân giác của 3góc BAC, BDE và DEC đồng quy
b. Cho AB có độ dài 1 đv. Chmr: MA+MB<\(\frac{4}{3}\)
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nội tiếp đường tròn (O) . Các điểm M,N lần lượt là trung điểm của các cạnh BC,AC. Tia MN cát (O) tại D. Chứng minh \(\frac{AB}{CD}+\frac{AC}{BD}=\frac{BC}{AD}\)
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.