Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\left(gt\right)\)
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right).\)
Mấy câu sau bạn xem lại đề.
Chúc bạn học tốt!
Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\left(gt\right)\)
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right).\)
Mấy câu sau bạn xem lại đề.
Chúc bạn học tốt!
Cho A ABC vuông tại A. Tia phân giác của góc B cắt AC tại K. Từ K kẻ KE vuông góc với BC
(E thuộc BC)
a) Chứng minh A ABK = A EBK
b) Chứng minh KA = KE
c) Chứng minh BK là đường trung trực của AE
d) Gọi M là giao điểm của tia EK và BA. Chứng minh MK = KC
ai giúp mi với đg gấp ạ TvT
Cho tam giác ABC cân ở A. Kẻ BD vuông góc AC, CE vuông góc với AB (D thuộc AC, e thuộc AB ). Gọi I là giao điểm của BD và CE. Chứng minh :
a) BE=CD
b) AI là tia phân giác của góc BAC
cho tam giác abc có ab=cd . D là trung điểm
a)chứng minh ABD= ACD
b) AD song song BC
Cho △OBC vuông tại O. Tia phân giác của góc B cắt OC tại K. Từ K kẻ KM vuông góc với BC(M thuộc BC)
a) Chứng minh △ OBK = △ MBK
b) Chứng minh KO = KM
c) Chứng minh BK là đường trung trực của OM
d) Gọi A là giao điểm của tia MK và BO. Chứng minh AK = KC
cần gấp ạ
Cho tam giác nhọn ABC, có M là trung điểm đoạn thẳng AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD
a) Chứng minh 2 tam giác ABM, CDM bằng nhau
b) Chứng minh Ab song song với CD
c) Gọi N là trung điểm của đoạn thẳng BC, đường thẳng MN cắt AD tại E. Chứng minh E là trung điểm của đoạn thẳng AD
Cho DEF vuông tại D. Tia phân giác của góc E cắt DF tại A. Từ A kẻ AB vuông góc với EF (B thuộc EF) a) Chứng minh EDA = BEA b) Chứng minh DA = AB c) Chứng minh EA là đường trung trực của DB d) Gọi C là giao điểm của tia ED và BA. Chứng minh AC = AF.
cho tam giác abc, trên tia đối của tia ab,ac lần lượt lấy các điểm d và e sao cho ad = ab và ae = ac
a) chứng minh de//bc
b) gọi m, n lần lượt là trung điểm của bc và de. chứng minh a là trung điểm của mn
Bài 3: Cho tam giác ABC. Gọi M là trung điểm cạnh BC. Trên tia AM lấy điểm D sao cho AM = MD
a) Chứng minh ∆AMB = ∆DMC.
b) Vẽ AH vuông góc BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh ∆HMA = ∆HME và suy ra ∆MED cân .
c) Gọi K là trung điểm của đoạn thẳng DE. Chứng minh DE song song BC