Cho tam giác ABC cân tại A. Kẻ BE và CF lần lượt vuông góc với AC và AB(E∈AC;F∈AB)
1/ C/minh BE=CF và góc ABE= góc ACF
2/ Gọi I là giao điểm của BE và CF, c/minh IE=IF
3/ AI là tia p/g của góc A
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Cho Tam giác ABC vuông cân tại A. Điểm E nằm giữa A và C, kẻ tia Ex sao cho EB là tia phân giác của góc AEx. Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K. Chứng minh EK<AB
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC nhọn. Đường cao AH. Qua H kẻ Hx vuông góc với AB tại I. Trên tia đối của IH lấy điểm D sao cho IH = ID. Từ H kẻ HK vuông góc HC tại K. Trên tia đối của tia AH lấy điểm E sao cho KH = KE. a) Chứng minh góc DAE = 2 lần góc BAC. b) Nối DE cắt AB và AC theo thứ tự tại M và N. c) Chứng minh ba đường thẳng AH, CM, BH đồng quy tại 1 điểm.
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng