Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

PL

Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng

 

NT
2 tháng 4 2021 lúc 22:02

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

Bình luận (0)
NT
2 tháng 4 2021 lúc 22:01

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
ML
Xem chi tiết
NC
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết