Chương 4: SỐ PHỨC

H24

Cho số phức \(z\) thỏa mãn \(\left|z\right|=1\). Giá trị lớn nhất của biểu thức \(P=\left|1+z\right|+2\left|1-z\right|\) bằng?

Có cách nào chứng minh không cần dùng bất đẳng thức Bunyakovsky không ạ, mình cảm ơn nhiều♥

undefined

NL
22 tháng 4 2022 lúc 21:33

Có thể đưa về hàm số:

\(AB=2\Rightarrow MB=\sqrt{AB^2-MA^2}=\sqrt{4-MA^2}\)

Đặt \(MA=t\) với \(0\le t\le2\) \(\Rightarrow MB=\sqrt{4-t^2}\)

\(P=MA+2MB=f\left(t\right)=t+2\sqrt{4-t^2}\)

Xét hàm \(f\left(t\right)\) trên \(\left[0;2\right]\)

\(f'\left(t\right)=1-\dfrac{2t}{\sqrt{4-t^2}}=0\Rightarrow2t=\sqrt{4-t^2}\Rightarrow5t^2=4\Rightarrow t=\dfrac{2}{\sqrt{5}}\)

\(f\left(0\right)=4\) ; \(f\left(2\right)=2\) ; \(f\left(\dfrac{2}{\sqrt{5}}\right)=2\sqrt{5}\)

\(\Rightarrow f\left(t\right)_{max}=2\sqrt{5}\Rightarrow P_{max}=2\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PD
Xem chi tiết