Ôn thi vào 10

HB

cho pt: \(x^2-2mx+m^2-m+1=0\) (x là ẩn số). Tìm m để pt có 2 nghiệm \(x_1;x_2\) sao cho biểu thức A=\(x_1^3+x_2^3-2x_1-2x_2\) đạt giá trị nhỏ nhất. 

NL
20 tháng 8 2021 lúc 13:22

\(\Delta'=m-1\ge0\Rightarrow m\ge1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)

\(A=x_1^3+x_2^3-2\left(x_1+x_2\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-2\left(x_1+x_2\right)\)

\(=8m^3-3.2m\left(m^2-m+1\right)-4m\)

\(=2m^3+6m^2-10m\)

\(=2\left(m^3+3m^2-5m+1\right)-2\)

\(=2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]-2\)

Do \(m\ge1\Rightarrow\left\{{}\begin{matrix}m-1\ge0\\\left(m^2-1\right)+4m>0\end{matrix}\right.\)

\(\Rightarrow2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]\ge0\)

\(\Rightarrow A\ge-2\)

\(A_{min}=-2\) khi \(m=1\)

Bình luận (0)

Các câu hỏi tương tự
MP
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
NR
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
DB
Xem chi tiết
NR
Xem chi tiết
AP
Xem chi tiết