Violympic toán 9

EC

Cho phương trình \(x^2+ax+b+1=0\) với a , b là tham số . Tìm giá trị của a , b để phương trình trên có 2 nghiệm phân biệt thỏa mãn điều kiện : \(\left\{{}\begin{matrix}x_1-x_2=3\\x_1^3-x_2^3=9\end{matrix}\right.\)

AH
19 tháng 1 2020 lúc 0:19

Lời giải:

Trước tiên để pt có 2 nghiệm phân biệt thì $\Delta>0$

$\Leftrightarrow a^2-4(b+1)>0(*)$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b+1\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} x_1-x_2=3\\ x_1^3-x_2^3=9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1-x_2=3\\ x_1^2+x_1x_2+x_2^2=3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (x_1-x_2)^2=9\\ x_1^2+x_1x_2+x_2^2=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x_1+x_2)^2-4x_1x_2=9\\ (x_1+x_2)^2-x_1x_2=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2-4(b+1)=9\\ a^2-(b+1)=3\end{matrix}\right.\)

\(\Rightarrow -3(b+1)=9-3=6\Rightarrow b=-3\)

Thay vào: $a^2=3+b+1=1\Rightarrow a=\pm 1$ (thỏa mãn $(*)$)

Vậy $(a,b)=(\pm 1;-3)$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết