Xét phương trình \(x^2-mx+1005m=0\) có \(\Delta=m^2-4.1005m=m^2-4020m\)
Do pt có hai nghiệm nên \(\Delta\ge0\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge4020\end{matrix}\right.\)
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1005m\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{2.1005m+2680}{m^2+1}=\dfrac{2010m+2680}{m^2+1}\)
\(=335\left(\dfrac{\left(m+3\right)^2}{m^2+1}-1\right)\ge-335\)
Vậy minM = -335, khi m = -3.