Ôn thi vào 10

HT

Cho phương trình \(x^2-mx-2m^2+3m-2=0\) (với m là tham số). Chứng minh rằng phương trình đã cho có 2 nghiệm phân biệt với mọi giá trị của m.

NT
28 tháng 5 2022 lúc 20:43

\(\text{Δ}=\left(-m\right)^2-4\left(-2m^2+3m-2\right)\)

\(=m^2+8m^2-12m+8\)

\(=9m^2-12m+8\)

\(=9m^2-12m+4+4=\left(3m-2\right)^2+4>0\)

Do đó: PHương trình luôn có hai nghiệm phân biệt

Bình luận (0)
H24
28 tháng 5 2022 lúc 20:45

Ptr có:`\Delta=(-m)^2-4(-2m^2+3m-2)`

                    `=m^2+8m^2-12m+8`

                    `=9m^2-12m+8`

                    `=(3m-2)^2+4 > 0 AA m`

 `=>` Pt có `2` nghiệm phân biệt `AA m`

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
GB
Xem chi tiết
HN
Xem chi tiết
MH
Xem chi tiết
PP
Xem chi tiết
TN
Xem chi tiết
KT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết