Ôn thi vào 10

PP

Cho phương trình \(x^2-2\left(m-1\right)x+m-3=0\). Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m

 

H24
8 tháng 5 2021 lúc 10:09

Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )

Ta có : \(\Delta'=b'^2-ac\)

\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)

\(=m^2-2m+1-m+3\)

\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)

Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
HN
Xem chi tiết
AQ
Xem chi tiết
TN
Xem chi tiết
GB
Xem chi tiết
HT
Xem chi tiết
PH
Xem chi tiết
MP
Xem chi tiết
TN
Xem chi tiết