Ôn thi vào 10

AQ

Cho phương trình \(x^2-4x-2m+5=0\)
a.Giải phương trình khi m=3
b.Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2+5x_1x_2=3\left(x_1+x_2\right)\)

NT
15 tháng 2 2022 lúc 15:22

a: Thay m=3 vào pt, ta được:

\(x^2-4x-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=5\)

hay \(\left[{}\begin{matrix}x=\sqrt{5}+2\\x=-\sqrt{5}+2\end{matrix}\right.\)

b: \(\text{Δ}=\left(-4\right)^2-4\left(-2m+5\right)\)

\(=16+8m-20=8m-4\)

Để phương trình có hai nghiệm thì 8m-4>=0

hay m>=1/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2+3x_1x_2-3\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4^2-3\cdot4+3\left(-2m+5\right)=0\)

\(\Leftrightarrow4-6m+15=0\)

=>-6m+19=0

hay m=19/6(nhận)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AQ
Xem chi tiết
NR
Xem chi tiết
AQ
Xem chi tiết
KT
Xem chi tiết
AL
Xem chi tiết
NR
Xem chi tiết
AQ
Xem chi tiết
XL
Xem chi tiết