Bất phương trình bậc nhất một ẩn

LN

Cho phương trình (m^2+1)x- 2m=0 (m là tham số).
a) Chứng minh phương trình là bậc nhất một ẩn với mọi giá trị của m.
b) Tìm m để nghiệm của phương trình đạt giá trị lớn nhất.
mnm giúp e với ạ, e cảm ơn nhìu nhìu

HP
21 tháng 3 2022 lúc 22:44

a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.

b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).

Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:

m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.

Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.

Với m=1, x=1.

Với m=-1, x=-1.

So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.

Bình luận (2)

Các câu hỏi tương tự
LM
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
KT
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
NY
Xem chi tiết