Bài 4: Công thức nghiệm của phương trình bậc hai

NH
Cho phương trình : (m-1)x²-2mx+m²-1=0 a/ Giải phương trình với m = 2 b/ tìm m để phương trình có nghiệm là -1
DH
6 tháng 3 2021 lúc 17:37

Với m = 2 phương trình trở thành 

\(x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy......

b) Phương trình có nghiệm là -1 

\(\Leftrightarrow\left(m-1\right)+2m+m^2-1=0\)

\(\Leftrightarrow m^2+3m-2=0\)

\(\Delta=3^2-4.1.\left(-2\right)=17>0\)

=> pt có 2 nghiệm pbiet \(\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

Bình luận (0)
TH
6 tháng 3 2021 lúc 18:04

a) Thay m=2 vào pt 

⇒ (2-1)x2-2 . 2 . x + 22 -1 = 0

⇒ x2- 4x + 3 = 0 

⇒ x2- x -3x +3 =0

⇒x(x-1) -3(x-1)=0

⇒(x-1) (x-3) = 0

TH1 :   x-1 =0

           x= 1

TH2 :  x-3 =0

           x=3

Vậy x=1 ; x=3

b) Thay x=-1 vào pt 

⇒ (m-1) . 1 + 2m + m2 -1 = 0

⇒  m-1 + 2m +m2 -1 = 0

⇒  m2 + 3m -2 = 0

⇒ m2 + \(\dfrac{3-\sqrt{17}}{2}\)m + \(\dfrac{3+\sqrt{17}}{2}\) m -2 =0

⇒ m( m + \(\dfrac{3-\sqrt{17}}{2}\) ) + 2 ( m +\(\dfrac{3-\sqrt{17}}{2}\)) =0

⇒ ( m+2) ( m + \(\dfrac{3-\sqrt{17}}{2}\)) = 0

Sau đó bn giải ra 2 TH là đc nha 

 

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
WB
Xem chi tiết
HN
Xem chi tiết
EB
Xem chi tiết
VN
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết