\(\Delta=\left(2m+1\right)^2-4\left(m-3\right)=4m^2+4m+1-4m+12=4m^2+13\)\(\Rightarrow\Delta>0\forall m\), theo Định lý Viet ta có\(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m-3\end{matrix}\right.\)
\(B=x_1x_2-\left(x_1^2+x^2_2\right)=x_1x_2-[\left(x_1+x_2\right)^2-2x_1x_2]\)
\(B=3x_1x_2-\left(x_1+x_2\right)^2=3(m-3)-\left(2m+1\right)^2\)
\(B=-4m^2-m-10=-\left(2m+\frac{1}{4}\right)^2-9\frac{15}{16}\)
Do \(\left(2m+\frac{1}{4}\right)^2\ge0\forall m\Leftrightarrow-\left(2m+\frac{1}{4}\right)^2\le0\Leftrightarrow B\le-9\frac{15}{16}\)
Vậy \(B_{min}=-9\frac{15}{16}\)
\(B_{max}=-9\frac{15}{16}\), chứ không phải Bmin.