Nguyễn Thị Diễm Quỳnhtran nguyen bao quan Nguyễn Phương Trâm Nguyễn Huy Tú Akai Haruma
Nguyễn Thị Diễm Quỳnhtran nguyen bao quan Nguyễn Phương Trâm Nguyễn Huy Tú Akai Haruma
cho Pt x^2+5x-3m=0 a) tìm m để PT có 2 nghiệm x1,x2 b) với m ở câu a lập 1 PT bậc 2 có 2 nghiệm là 2/x1^2 và 2/x2^2
cho PT x2 + 2x - m + 3 = 0
Tìm m để phương trình có nghiệm thoả mãn
a) x1 = 2x2
b) x12 - 2x2 = 3m +1
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
Cho phương trình :
x2 − 2x + 2 − m = 0 (x là ẩn số, m là tham số)
Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức:
2x13 +(m + 2)x2 2 = 5
Cho pt: x2 - 2(1-a)x + a2 + a - 3 = 0
a) tìm giá trị của m khi a bằng 0.
b) tìm a để phương trình có hai nghiệm x1, x2.
c) tìm a biết phương trình có nghiệm bằng -1.
Bài 2: Cho phương trình: x2 – 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm x1, x2 phân biệt.
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm phân biệt x1,x2thỏa mãn: x1^2+2mx2-x1+x1.x2
Cho phương trình \(x^2-3x+m=0\) (1) (x là ẩn).
Tìm các giá trị m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\).