Ôn tập toán 7

BT

Cho phân số \(A=\frac{6n+7}{2n+3}\)

a) Tìm số nguyên n để A có giá trị nguyên.

b) Tìm số nguyên n để a có giá trị nhỏ nhất.

DV
8 tháng 7 2016 lúc 9:42

a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên

<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}

<=> 2n thuộc {-5; -4; -2; -1}

Vì n nguyên nên n thuộc {-2; -1}

b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN

<=> 2n + 3 là số nguyên dương nhỏ nhất 

<=>  2n + 3 = 1 

<=> 2n = -2

<=> n = -1

Bình luận (0)
LH
8 tháng 7 2016 lúc 10:06

a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)

\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

Nếu 2n+3 = 1 => n = -2 (nhận)

Nếu 2n+3 = 2 => n =-0,5 (loại)

Nếu 2n + 3 = 4 => n = 3,5 (loại)

Nếu 2n + 3 = -1 => n = 1 (nhận)

Nếu 2n + 3 = -2 => n = -2,5 (loại)

Nếu 2n + 3 = -4 => n =-3,5 (loại)

Vậy n \(\in\) {-2;1}

b) A GTNN => \(\frac{2}{2n+3}\) có GTLN

=> 2n + 3 là số nguyên dương nhỏ nhất

=> 2n + 3 = 1 

=> 2n = -2

=> n = -1

Bình luận (2)

Các câu hỏi tương tự
BT
Xem chi tiết
NT
Xem chi tiết
PU
Xem chi tiết
XT
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
HM
Xem chi tiết
NM
Xem chi tiết