\(P-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
=>P<=2/3
\(P-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
=>P<=2/3
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
1,\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
2,Giải phương trình:
a \(\dfrac{3x}{a}\) +a\(^2\) = \(\dfrac{ax}{3}-3a\)
b. \(\dfrac{1}{3\left(4-x\right)}-\dfrac{1}{a\left(4-x\right)}=\dfrac{2}{3\left(3-x\right)}-\dfrac{2}{a\left(3-x\right)}\)
Và tìm giá trị của a để phg trình có 1 nghiệm
3, Giải BPT:
a. \(x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\) và tìm giá trị nguyên âm của x thỏa mãn BPT
b. \(5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
4, Cho 0 < x < 1. Tìm GTNN của biểu thức A= \(\dfrac{3}{1-x}+\dfrac{4}{x}\)
Các bn giúp mik vs,mik đag cần gấp.Mik xin cảm ơn ak
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
Cho x, y, z là các số thực dương thỏa mãn x2 + y2 + z2 = \(\dfrac{3}{7}\)
Chứng minh rằng : \(\sqrt{8+14x}+\sqrt{8+14y}+\sqrt{8+14z}\)\(\le\)\(3+3\sqrt{7}\)
Tìm x:a, \(\sqrt{x-94}+\sqrt{96-x}=x^2-190x+9027\)
b, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
c, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
Cho \(A=\dfrac{x-\sqrt{x}+2}{\sqrt{x}+3}\) và \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
Cho M = B : A ( với \(x\ge0;x\ne4\)). Tính giá trị x để M có giá trị lớn nhất.
1) Cho các số thực x,y>0 thỏa mãn : \(\dfrac{y}{2x+3}\)= \(\dfrac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
Tìm GTNN của biểu thức .
2) Tìm GTNN của biểu thức : A=\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
3) Tìm GTLN của D=\(\dfrac{x}{\left(x+100\right)^2}\)
Tìm max: \(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}+\dfrac{2x^2+4}{1-x^3}\)
Giải bằng máy tính CASIO kết quả chính xác bài tập sau :
\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+\(\dfrac{1}{\sqrt{3}+\sqrt{4}}+....+\dfrac{1}{\sqrt{2014}+\sqrt{2015}}\)