Lời giải:
PT hoành độ giao điểm:
$\frac{3}{4}x^2+\frac{3}{2}x-2m=0$
$\Leftrightarrow 3x^2-6x+8m=0(*)$
Để $(d)$ và $(P)$ cắt nhau tại 2 điểm phân biệt nằm bên phải trục tung thì $(*)$ phải có 2 nghiệm phân biệt dương.
\(\Leftrightarrow \left\{\begin{matrix} \Delta'=9-24m>0\\ x_1+x_2=2>0\\ x_1x_2=\frac{8m}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< \frac{9}{24}\\ m>0\end{matrix}\right.\Leftrightarrow m\in (0; \frac{9}{24})\)