Violympic toán 9

CG

Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?

NL
13 tháng 5 2020 lúc 14:59

Để d đi qua A

\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)

Phương trình hoành độ giao điểm (P) và d:

\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)

Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép

\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)

- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)

Tọa độ tiếp điểm là \(\left(0;0\right)\)

- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)

Tọa độ tiếp điểm là \(\left(2;2\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
CG
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
TD
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BL
Xem chi tiết
TT
Xem chi tiết