Lời giải:
\(P=3+3^2+3^3+...+3^{2018}+3^{2019}\)
\(P=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2016}+3^{2017}+3^{2018}+3^{2019})-1\)
\(=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2016}(1+3+3^2+3^3)-1\)
\(=(1+3+3^2+3^3)(1+3^4+...+3^{2016})-1\)
\(=40(1+3^4+...+3^{2016})-1\)
\(=5.8(1+3^4+...+3^{2016})-5+4\)
\(=5[8(1+3^4+...+3^{2016})-1]+4\)
Vậy $P$ chia $5$ dư $4$ chứ không phải $P$ chia hết cho $5$