Cho (P) y=x2
(d) y=2x+m2+1
a) Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b) Gọi tọa độ giao điểm của (P) và (d) ở câu A là A(x1,x2) và B(x2,y2). Từ đó hãy tìm giá trị của m để biểu thức Q=x1(10m+y2)+x2(10m+y1)+1968 đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó của biểu thức Q
Mọi người làm giúp mình câu b với ạ
(P) y = x2
(d) y = 2x + m2 + 1
a) Phương trình hoành độ giao điểm:
\(x^2=2x+m^2+1\) (1)
\(\Leftrightarrow x^2-2x-m^2-1=0\)
Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)
⇒ (1) có 2 nghiệm với mọi m
⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.
b)
\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)
\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)
\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)
\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)
\(=-2\left(m-5\right)^2+2016\le2016\)
Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)