Ôn tập phương trình bậc hai một ẩn

PD

Cho (P) y=x2

(d) y=2x+m2+1

a) Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt A và B

b) Gọi tọa độ giao điểm của (P) và (d) ở câu A là A(x1,x2) và B(x2,y2). Từ đó hãy tìm giá trị của m để biểu thức Q=x1(10m+y2)+x2(10m+y1)+1968 đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó của biểu thức Q

Mọi người làm giúp mình câu b với ạ

PA
6 tháng 5 2018 lúc 17:25

(P) y = x2

(d) y = 2x + m2 + 1

a) Phương trình hoành độ giao điểm:

\(x^2=2x+m^2+1\) (1)

\(\Leftrightarrow x^2-2x-m^2-1=0\)

Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)

⇒ (1) có 2 nghiệm với mọi m

⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.

b)

\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)

\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)

\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)

\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)

\(=-2\left(m-5\right)^2+2016\le2016\)

Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)

Bình luận (6)

Các câu hỏi tương tự
H24
Xem chi tiết
NK
Xem chi tiết
T8
Xem chi tiết
JK
Xem chi tiết
T8
Xem chi tiết
DH
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết