§4. Các tập hợp số

H24

Cho (P): y = \(x^2-3x+1\) và (d) : y = \(\left(2m^2+1\right)x+2\) và điểm M(3;3). Tìm m để (P) cắt (d) tại hai điểm phân biệt A,B sao cho tam giác MBA vuông cân tại M

AH
12 tháng 11 2018 lúc 18:56

Lời giải:

Đặt \(2m^2+1=t\)

Gọi \(A(x_A, tx_A+2); B(x_B; tx_B+2)\)

PT hoành độ giao điểm $(P)$ và $(d)$ là:

\(x^2-3x+1-(tx+2)=0\)

\(\Leftrightarrow x^2-(t+3)x-1=0\)

Theo định lý Viete: \(\left\{\begin{matrix} x_A+x_B=t+3\\ x_Ax_B=-1\end{matrix}\right.\)

Để thỏa mãn tam giác $MBA$ vuông cân tại $M$ thì:

\(\left\{\begin{matrix} |\overrightarrow{MA}|=|\overrightarrow{MB}|\\ \overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow {0}\end{matrix}\right.\)

Trước hết : \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow (x_A-3, tx_A-1)(x_B-3, tx_B-1)=\overrightarrow{0}\)

\(\Leftrightarrow (x_A-3)(x_B-3)+(tx_A-1)(tx_B-1)=0\)

\(\Leftrightarrow x_Ax_B-3(x_A+x_B)+9+t^2x_Ax_B-t(x_A+x_B)+1=0\)

\(\Leftrightarrow -1-3(t+3)+9-t^2-t(t+3)+1=0\)

\(\Leftrightarrow -2t^2-6t=0\Leftrightarrow t=0\) hoặc $t=-3$

Hiển nhiên \(t=2m^2+1>0\) với mọi $m$ nên vô lý

Do đó không tồn tại $m$ thỏa mãn.

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
T2
Xem chi tiết
T2
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
BH
Xem chi tiết
NQ
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết