Violympic toán 9

TT

Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: \(A=p^{8n}+23p^{4n}+16\) chia hết cho 5.

AH
29 tháng 12 2017 lúc 13:25

Lời giải:

Với $p$ là số nguyên tố không chia hết cho $5$ thì $(p,5)=1$

Áp dụng định lý Fermat nhỏ ta có:

\(p^{5-1}\equiv 1\pmod 5\)

\(\Leftrightarrow p^4\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} p^{4n}\equiv 1^n\equiv 1\pmod 5\\ p^{8n}\equiv 1^{2n}\equiv 1\pmod 5\end{matrix}\right.\)

\(\Rightarrow A=p^{8n}+23.p^{4n}+16\equiv 1+23.1+16\pmod 5\)

\(\Leftrightarrow A\equiv 40\equiv 0\pmod 5\)

Vậy $A$ chia hết cho $5$

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
AS
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
AJ
Xem chi tiết