Violympic toán 9

BL

Cho (O) đường kính BC. A thuộc (O). Hạ AH vuông góc BC, HE vuông góc AB, HF vuông góc AC. ĐƯờng thẳng EF cắt (O) tại M và N

a) Cmr EF = AH

b) Cmr AE . AB = AF. AC

c) Cmr tam giác AMN cân tại A

NT
7 tháng 6 2022 lúc 23:04

a: Xét (O) có

ΔABC nộitiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

Suy ra: AH=EF

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và(2) suy ra \(AE\cdot AB=AF\cdot AC\)

Bình luận (0)