a: Xét (O) có
MC,MB là các tiếp tuyến
Do đó: MC=MB
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>BC\(\perp\)AC tại C
=>BC\(\perp\)AN tại C
=>ΔBNC vuông tại C
Ta có: \(\widehat{NCM}+\widehat{MCB}=\widehat{NCB}=90^0\)
\(\widehat{CNM}+\widehat{CBM}=90^0\)(ΔNCB vuông tại C)
mà \(\widehat{MCB}=\widehat{MBC}\)
nên \(\widehat{NCM}=\widehat{CNM}\)
=>ΔMNC cân tại M
=>MN=MC
mà MC=MB
nên MN=MB
=>M là trung điểm của BN
c: ta có: CH\(\perp\)AB
NB\(\perp\)BA
Do đó: CH//NB
Xét ΔANM có CI//NM
nên \(\dfrac{CI}{NM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMB có IH//MB
nên \(\dfrac{IH}{MB}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{CI}{NM}=\dfrac{IH}{MB}\)
mà NM=MB
nên CI=IH
=>I là trung điểm của CH