Kẻ OH vuông góc CD
=>H là trung điểm của CD
Xét hình thang EFDC có
H là trung điểm của CD
HO//CE//DF
=>O là trung điểm của EF
=>AE=FB
CH=DH=7cm
=>OH=24cm
=>CE+DF=48cm
S CEFD=1/2*48*14=7*48=336cm2
Kẻ OH vuông góc CD
=>H là trung điểm của CD
Xét hình thang EFDC có
H là trung điểm của CD
HO//CE//DF
=>O là trung điểm của EF
=>AE=FB
CH=DH=7cm
=>OH=24cm
=>CE+DF=48cm
S CEFD=1/2*48*14=7*48=336cm2
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho nửa đường tròn tâm O, đường kính AB. I tiếp điểm OA. Dân CD vuông góc AB tại I. K thuộc góc BC, AK cắt CD tại H.
a) CM tứ giác BIHK nội tiếp
b) CM AH.AK không phụ thuộc vị trí điểm K
c) Kẻ DN vuông góc CB, DM vuông góc AC. CM MN, AB, CD đồng quy
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Cho (O; R), đường kính AB, dây cung AC. Các tiếp tuyến với đường tròn tại B và C cắt nhau ở D. Biết \(\widehat{ABC}=30^o\), R=2cm
a) Chứng minh: DO // AC
b) Tính độ dài BD, CD
Cho đường tròn (O)đường kính AB. Trên tia đối của tia AB lấy điểm C
(C không trùng với B). Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại E.
a) Chứng minh rằng tứ giác AODE nội tiếp.
b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn (O) (K không trùng với B). Chứng minh \(E\widehat{H}K=K\widehat{B}A\)
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC