Chương II - Đường tròn

HH

Cho nửa đường tròn (O;R) đường kính AB, vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Trên tia Ax lấy điểm E (E khác A, AE < R), trên nửa đường tròn lấy điểm M sao cho EM = EA, đường thẳng Em cắt tia By tại F.

a) Chứng minh EF là tiếp tuyến của đường tròn (O)

b) Chứng minh tam giác EOF là tam giác vuông

c) Chứng minh AM.OE + BM.OF = AB.EF

d) Tìm vị trí điểm E trên tia Ax sao cho S∆AMB = ¾ S∆EOF
gtiup mk lam cau c voi

NT
3 tháng 12 2018 lúc 20:16

Mạng mẽo như gì, xin lỗi bạn hen

c, (O;R) có EM, AE là 2 tiếp tuyến cắt nhau => AE = EM, EO là phân giác của góc AEM

\(\Delta AEM\) có: AE = EM \(\Rightarrow\Delta AEM\)cân tại E có EO là phân giác của \(\hat{AEM}\)nên EO là đường cao \(\Rightarrow EO\perp AM\)

\(\Delta AMB\) nội tiếp (O), AB là đường cao nên \(\Delta AMB\) vuông tại M \(\Rightarrow AM\perp MB\)

Từ 2 điều trên \(\Rightarrow\)EO // MB \(\Rightarrow\)\(\hat{EOM}=\hat{ABM}\) (so le trong)

Dễ dàng chứng minh \(\Delta EMO \sim \Delta AMB (g-g)\)\(\Rightarrow\dfrac{EM}{OE}=\dfrac{AM}{AB}\Rightarrow EM.AB=AM.OE\)(1)

Chứng minh tương tự ta có: \(\Delta FMO \sim \Delta BMA (g-g)\)\(\Rightarrow\dfrac{OF}{MF}=\dfrac{AB}{BM}\Rightarrow OF.BM=AB.MF\)(2)

Cộng (1) và (2) ta có: \(AM.OE+OF.BM=AB.MF+EM.AB\)

\(=AB\left(MF+EM\right)=AB.EF\)

Bình luận (1)
NT
3 tháng 12 2018 lúc 20:03
https://i.imgur.com/0RUgXI8.png
Bình luận (0)

Các câu hỏi tương tự
CP
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
MN
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết