Bài 3: Rút gọn phân thức

H24

cho \(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

a) Tìm ĐKXĐ và rút gọn M

b) Tìm x thuộc Z để M đạt GTLN

H24
26 tháng 2 2018 lúc 17:25

\(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{6}{x+2}\right)\)

a) dkxd : x khac {0;1;-2)

\(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right).\left(\dfrac{x+2}{6}\right)\)

\(M=\left(\dfrac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(\dfrac{x+2}{6}\right)=\dfrac{-6}{6\left(x-2\right)}=\dfrac{1}{2-x}\)

b)

GTLN M =1 khi x =1

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
DC
Xem chi tiết
KV
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
LN
Xem chi tiết