trong mặt phẳng với hệ trục tọa đọ oxy, cho tam giác ABC có phương trình đường cao kẽ từ A, đường phân giác trong kẽ từ C, trung tuyến kẽ từ B lần lượ là d1: 3x - 4y + 27= 0; d2: x +2y-5=0; d3:4x+5y-3=0. Tìm tọa dộ tâm và tính bán kính của của đường tròn ngoại tiếp tam giác ABC
1.Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diên tích bằng 18.Gọi E là trung điểm của BC.Đường tròn ngoại tiếp tam giác CDE cắt đường chéo AC tại G (G không trùng C).Biết E(1;-1), G(2/5;4/5) và điểm D thuộc đường thẳng d:x+y-6=0. Tìm tọa độ các điểm A,B,C,D.
2.Cho hình chóp s.abc có đáy ABC là tam giác đều cạnh a, tam giác SAB vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt đáy.Tính thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và AC theo a.
3.Giải hệ phương trình
\(\begin{cases}\sqrt{3-x}+\sqrt{y+1}=x^{3^{ }}\\x^{3^{ }}-y^{3^{ }}+12x-3y=3y^{2^{ }}-6x^{2^{^{ }}}-7\end{cases}\)
Trong mp Oxyz cho 4 điểm A(0,1,0)B(1,1,-1)C(-1,3,2)D(1,-1,2)
Gọi i là hình chiếu vuông góc của D lên mp Oxy , viết pt mặt cầu đi wa B và có tâm I
Cho hình tứ diện ABCD
a) Chứng minh hệ thức : \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0\)
b) Từ hệ thức hãy suy ra định lí :
"Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện tứ ba cũng vuông góc với nhau"
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Cho hình chóp s.abcd có day abcd là hình vuông cạnh a căn 3 tam giác sbc vuông tại s và nằm trong mặt phẳng vuông góc với mặt đáy đường thẳng SD tạo vs mặt phẳng SBC 1 góc bằng 60 độ tính thể tích chóp S.ABCD và tính coain của mặt phẳng SBD và ABCD
cho tam giác ABC vuông tại A, điểm I(9;9) thuộc cạnh AB(IB<IA).Đường tròn (C) tâm I bán kính IB cắt AB,BC lần lượt tại D và E,AE cắt đừơng tròn (C) tại G(10;2).Biết GD=\(2\sqrt{10}\) và C thuộc (d):x-2y-10=0. Tìm toạ độ ba đỉnh tam giác A,B,C biết B có toạ độ nguyên.
Trong không gian với hệ trục tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tại gốc tọa độ. Biết A(2;0;0); B(0;1;0); S(0;0;\(2\sqrt{2}\)).Gọi M là trung điểm cạnh SC
a. Tính góc và khoảng cách giữa 2 đường thẳng SA; BM
b. Giả sử mặt phẳng (ABM) cắt đường thẳng SD tại N. Tính thể tích khối hình chóp S.ABMN
Mọi người giúp mình giải câu này với nhé. Mình cảm ơn! :D
(oxy) ΔABC vuông tại A. cosBCA =3/căn10. Đường thẳng AB qua điểm M(4;-1), đường thẳng AC qua N(-2;-1). Trọng tâm ΔABC là G(11/3;10/3). Viết pt các đường thẳng chứa các cạnh của ΔABC biết điểm A có tọa độ nguyên.