Lời giải:
Ta có:
Với mặt cầu $S$. Theo công thức:
\(S_{mc}=4\pi R^2\)
\(V_{kc}=\frac{4}{3}\pi R^3\)
\(\Rightarrow \frac{S_{mc}}{V_{kc}}=\frac{4\pi R^2}{\frac{4}{3}\pi R^3}=\frac{3}{R}=\frac{3}{1}=3\)
Đáp án C
Lời giải:
Ta có:
Với mặt cầu $S$. Theo công thức:
\(S_{mc}=4\pi R^2\)
\(V_{kc}=\frac{4}{3}\pi R^3\)
\(\Rightarrow \frac{S_{mc}}{V_{kc}}=\frac{4\pi R^2}{\frac{4}{3}\pi R^3}=\frac{3}{R}=\frac{3}{1}=3\)
Đáp án C
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc πđáy ABCD và SA=a. Gọi E là trung điểm CD. Mặt cầu đi qua 4 điểm S, A, B , E có diện tích Smc bằng ?
A. Smc= 41πa2/8B. Smc= 25πa2/16C. Smc= 41πa2/16D. Smc=25πa2/8Cho hình chóp A.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó ?
Trong mặt phẳng \(\left(\alpha\right)\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng \(Ax\) vuông góc \(\left(\alpha\right)\) ta lấy một điểm S tùy ý, dựng mặt phẳng \(\left(\beta\right)\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \(\left(\beta\right)\) cắt SB, SC, SD lần lượt tại B', C' , C'.
a) Chứng minh rằng các điểm A, B, C, D, B', C', D' luôn luôn thuộc một mặt cầu cố định
b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành
Từ một điểm M nằm ngoài mặt cầu \(S\left(O;r\right)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D
a) Chứng minh rằng MA.MB=MC.MD
b) Gọi MO = d. Tính MA.MB theo r và d
Cho hình cầu đường kính \(AA'=2r\). Gọi H là một điểm trên đoạn AA' sao cho \(AH=\dfrac{4r}{3}\). Mặt phẳng \(\left(\alpha\right)\) qua H và vuông góc với AA' cắt hình cầu theo đường tròn (C)
a) Tính diện tích của hình tròn (C)
b) Gọi BDC là tam giác đều nội tiếp trong (C), hãy tính thể tích hình chóp A.BCD và hình chóp A'.BCD
1. Nếu tăng diện tích mặt cầu lên 4 lần thì thể tích khối cầu đó tăng bao nhiêu?
Cho mặt cầu \(S\left(O;r\right)\) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B.
Chứng minh rằng : \(\widehat{AMB}=\widehat{AIB}\) ?
Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)
a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi
b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất
c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)
Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi \(\left(\alpha\right)\) là mặt phẳng đi qua A sao cho góc giữa OA và \(\left(\alpha\right)\) bằng \(30^0\)
a) Tính diện tích của thiết diện tạo bơi \(\left(\alpha\right)\) và hình cầu
b) Đường thẳng \(\Delta\) đi qua A vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại B. Tính độ dài đoạn AB ?