Bài 2: Mặt cầu

SK

Cho hình chóp A.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó ?

HB
27 tháng 4 2017 lúc 17:35

Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.

Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.

Ta có SJ = .

Do SC vuông góc (SAB) nên IJ // SC.

Gọi H là trung điểm SC, ta có SH = IJ = .

Do vậy, IS2 = IJ2 + SJ2 = (a2 + b2 + c2)/4 và bán kính hình cầu ngoại tiếp S.ABC là

r = IS = .

Diện tích mặt cầu là:

S = 4 πr2 = π(a2 + b2 + c2) (đvdt)

Thể tích khối cầu là : (đvtt)



Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
01
Xem chi tiết
HP
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
QH
Xem chi tiết