Violympic toán 9

NH

Cho hpt:\(\left\{{}\begin{matrix}3x+(m-1)y=12\\(m-1)x+12y=24\end{matrix}\right.\)

a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y=-1

b,tìm m để hpt có nghiệm duy nhất và nguyên

TP
21 tháng 3 2020 lúc 9:25

a) \(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)

+) Xét \(m=1\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\) ( loại )

+) Xét \(m\ne1\):

\(\left\{{}\begin{matrix}x=\frac{24-12y}{m-1}\\\frac{3\cdot\left(24-12y\right)}{m-1}+\left(m-1\right)y=12\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(24-12y\right)+\left(m-1\right)^2\cdot y=12\left(m-1\right)\)

\(\Leftrightarrow y\left(m^2-2m-35\right)=12m-84\)

\(\Leftrightarrow y\left(m-7\right)\left(m+5\right)-12\left(m-7\right)=0\)

\(\Leftrightarrow\left(m-7\right)\cdot\left[y\left(m+5\right)-12\right]=0\)

Xét \(m=7\Leftrightarrow x+2y=4\) ( loại vì có vô số nghiệm thỏa mãn )

Xét \(m\ne7\Leftrightarrow y\left(m+5\right)-12=0\Leftrightarrow y=\frac{12}{m+5}\) ( \(m\ne-5\) )

Khi đó \(x=\frac{24-12\cdot\frac{12}{m+5}}{m-1}=\frac{24}{m+5}\)

\(x+y=\frac{12+24}{m+5}=-1\)

\(\Leftrightarrow\frac{36}{m+5}=-1\Leftrightarrow m=-41\) ( thỏa mãn )

Vậy...

b) Hpt có nghiệm duy nhất nguyên \(\Leftrightarrow\left\{{}\begin{matrix}\frac{12}{m+5}\in Z\\\frac{24}{m+5}\in Z\end{matrix}\right.\)

\(24⋮12\Leftrightarrow\frac{12}{m+5}\in Z\) \(\Leftrightarrow\left(m+5\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Đến đây tự tìm m rồi thử lại nhé.

\(\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
AV
Xem chi tiết
WN
Xem chi tiết
HN
Xem chi tiết
HA
Xem chi tiết
BB
Xem chi tiết