Cho HPT: \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) (m là tham số thực). Tìm giá trị của m để HPT trên có nghiệm duy nhất (x;y) thỏa mãn: Điểm M(x;y) nằm hoàn toàn phía bên trái đường thẳng: \(x=\sqrt{3}\)
cho hpt\(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)tìm giá trị của m để hpt có nghiệm duy nhất sao cho x+y nhỏ nhất
cho hpt:\(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
a. giải hpt khi m=2
b.tìm giá trị của m để hpt có nghiệm duy nhất
Bài 5 : cho HPT : \(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a/ Giải HPT khi m = -3
b/ Tìm m để HPT có nghiệm duy nhất ( x;y ) thỏa mãn điều kiện \(x+y^2=1\)
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Cho hpt : \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
m là tham số
a) Giải hpt với m = - \(\sqrt{2}\)
b) Xác định điều kiện của m để hpt có nghiệm duy nhất thỏa mãn x + y > 0
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
Cho HPT: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\) có nghiệm (x;y) thỏa mãn: \(x^2-y=2x+1\)