Chương III - Hệ hai phương trình bậc nhất hai ẩn

HN

Cho hpt \(\left\{{}\begin{matrix}\left(m-1\right)x_{ }+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\) a) Giải hpt khi m= -1 b) Tìm giá trị của m để hpt trên có 1 nghiệm duy nhất ( x ; y ) thỏa mãn điều kiện x + y = 3

NL
30 tháng 5 2019 lúc 16:28

a/ Bạn tự giải

b/ Để hệ có nghiệm duy nhất thì:

\(\left(m-1\right)^2-1\ne0\Leftrightarrow\left[{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\)

Khi đó hệ tương đương: \(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\\left(m-1\right)x+\left(m-1\right)^2y=m\left(m-1\right)\end{matrix}\right.\)

Trừ pt dưới cho trên: \(m\left(m-2\right)y=\left(m-2\right)^2\Rightarrow y=\frac{m-2}{m}\)

\(\Rightarrow x=m-\left(m-1\right)y=\frac{3m-2}{m}\)

\(x+y=3\Leftrightarrow\frac{3m-2}{m}+\frac{m-2}{m}=3\Leftrightarrow4m-4=3m\Rightarrow m=4\)

Bình luận (1)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
AA
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
JP
Xem chi tiết
VV
Xem chi tiết