Cho hình thoi ABCD có góc A bằng 60 độ. Lấy M thuộc AB, N thuộc BC sao cho MB+NB=AB. Chứng minh tam giác MDN đều.
: Cho hình thang ABCD (AB // CD), các tia phân giác của góc A, góc D cắt nhau tại M thuộc cạnh BC. Cho biết AD = 7cm. Chứng minh rằng một trong hai đáy của hình thang có độ dài nhỏ hơn 4cm cứu với
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
cho hình vuông ABCD , điểm E thuộc cạnh CD điểm F thuộc cạnh BC sao cho chu vi tam giác CFE = nửa chu vi hình vuông ABCD. C/M góc FAE = 45 dộ
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho tam giác ABC vuông tại A(AB<AC).Điểm M là trung điểm của cạnh BC.Vẽ MD vuông góc với AB tại D,ME vuông góc với AC tại E.Trên tia đối của tia DM lấy điểm N sao cho DN=DM a)Cm:tứ giác ADME là hình chữ nhật b)Cm: tiwsc hiasc AMBN là hình thoi c)Vẽ CK vuông góc với BN tại K.Họi I là giao điểm của AM bà DE,chứng minh rằng rằng tam giác IKN cân d)Gọi D là giao điểm của AM VÀ CD,Chứng minh rằng AN=3MF
Cho hình thoi MNPQ có góc M bằng 600. Gọi A, B, C, D lần lượt là trung điểm của MN, MQ, PQ, PN. Gọi I là giao điểm của MP và NQ.
a. Tứ giác ABCD là hình gì?
b. Chứng minh Tam giác NBC là tam giác đều.
c. Gọi E là điểm đối xứng của B qua A, gọi F là trung điểm của NB.
Chứng minh E đối xứng với Q qua F.
d. Chứng minh IC vuông góc với NB.
e. Cho điểm S di chuyển trên MP. Tìm vị trí của điểm S để SB +SQ nhỏ nhất.
Cho hình thoi MNPQ có góc M bằng 600. Gọi A, B, C, D lần lượt là trung điểm của MN, MQ, PQ, PN. Gọi I là giao điểm của MP và NQ.
a. Tứ giác ABCD là hình gì?
b. Chứng minh Tam giác NBC là tam giác đều.
c. Gọi E là điểm đối xứng của B qua A, gọi F là trung điểm của NB.
Chứng minh E đối xứng với Q qua F.
d. Chứng minh IC vuông góc với NB.
e. Cho điểm S di chuyển trên MP. Tìm vị trí của điểm S để SB +SQ nhỏ nhất.