Violympic toán 9

DM

Cho hình thang vuông ABCD ( \(\widehat{A} = \widehat{D} = 90 ^0\) ) ; E là trung điểm của AD và \(\widehat{BEC} = 90^0\) . Cho biết ED = 2a . CMR :

a, AB . CD = \(a^2\)

b, \(\bigtriangleup{EAB}\) tia tia phân giác của \(\widehat{ABC}\)

NT
24 tháng 8 2019 lúc 8:09

a, Xét \(\bigtriangleup{EAB} \)\(\bigtriangleup{CDE}\) , ta có :

\(\widehat{A} = \widehat{D} = 90^0\)

\(\widehat{AEB} = \widehat{ECD} \)

\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)

\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)

\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)

\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)

b, Xét \(\bigtriangleup{EAB}\)\(\bigtriangleup{CEB}\) , ta có :

\(\widehat{A} = \widehat{CEB} = 90^0\)

Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)

\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)

\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
CG
Xem chi tiết
NV
Xem chi tiết
GN
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết