Chương I - Hệ thức lượng trong tam giác vuông

LL

* Cho hình thang ABCD vuông góc tại A và D. Hai đường chéo vuông góc với nhau tại O. Biết AB=\(2\sqrt{13}\), OA=6, tính diện tích hình thang ABCD

NL
12 tháng 7 2021 lúc 14:48

undefined

Bình luận (0)
NL
12 tháng 7 2021 lúc 14:48

Xét tam giác vuông OAB:

\(OB=\sqrt{AB^2-OA^2}=4\)

Áp dụng hệ thức lượng cho tam giác vuông ABD với đường cao AO:

\(AB^2=OB.BD\Rightarrow BD=\dfrac{AB^2}{OB}=13\)

\(\Rightarrow\left\{{}\begin{matrix}OD=BD-OB=9\\AD=\sqrt{BD^2-AB^2}=\sqrt{29}\end{matrix}\right.\)

\(\widehat{BAO}=\widehat{DCO}\left(slt\right)\Rightarrow\Delta_VAOB\sim\Delta_VCOD\) (g.g)

\(\Rightarrow\dfrac{AB}{DC}=\dfrac{OB}{OD}\Rightarrow DC=\dfrac{AB.OD}{OB}=\dfrac{9\sqrt{13}}{2}\)

\(S_{ABCD}=\dfrac{1}{2}AD.\left(AB+CD\right)=\dfrac{1}{2}.\sqrt{29}.\left(2\sqrt{13}+\dfrac{9\sqrt{13}}{2}\right)=...\)

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết