Chương I - Hệ thức lượng trong tam giác vuông

TH

Bài 3: Cho hình thang ABCD (đáy AB, CD) 𝐴̂ = 𝐷̂ = 900 có hai đường chéo vuông góc với nhau tại O, AB = 15cm, AD = 20cm.

a) Tính độ dài OB, OD

b) Tính độ dài AC

c) Tính diện tích hình thang ABCD

NT
26 tháng 9 2021 lúc 13:54

a: Xét ΔDAB vuông tại A có 

\(DB^2=AB^2+AD^2\)

hay DB=25(cm)

Xét ΔDAB vuông tại A có AO là đường cao ứng với cạnh huyền DB

nên \(\left\{{}\begin{matrix}AD^2=DO\cdot DB\\AB^2=BO\cdot BD\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DO=16\left(cm\right)\\OB=9\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NM
26 tháng 9 2021 lúc 13:59

\(a,BD=\sqrt{AB^2+AD^2}=25\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AD^2=OD\cdot BD\\AB^2=OB\cdot BD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OD=\dfrac{AD^2}{BD}=16\left(cm\right)\\OB=\dfrac{AB^2}{BD}=9\left(cm\right)\end{matrix}\right.\)

\(b,\) Áp dụng HTL:

\(\left\{{}\begin{matrix}AO^2=DO\cdot OB=144\\AD^2=AO\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AO=12\left(cm\right)\\AC=\dfrac{AD^2}{AO}=\dfrac{100}{3}\left(cm\right)\end{matrix}\right.\)

\(c,DC=\sqrt{AD^2+AC^2}=\dfrac{20\sqrt{34}}{3}\left(cm\right)\\ S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=10\left(\dfrac{20\sqrt{34}}{3}+15\right)=\dfrac{450+200\sqrt{34}}{3}\left(cm^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
QE
Xem chi tiết
LL
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết