Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho hình thang ABCD, AB//CD. M là trung điểm của CD, I là giao điểm của AM và BD; K là giao điểm của BM và AC. gọi O là giao điểm AC và BD.MO cắt AB tại N; BO cắt BC tại S. CMR: N là trung điểm của AB. A;D;S thẳng hàng
Cho hình thang ABCD có hai đáy AB và CD (AB < CD) có AD = BC. Gọi E, F lần lượt là trung điểm của AD, BC. Qua E vẽ đường thẳng song song với CD, đường thẳng này cắt AC tại K.
a) Chứng minh K là trung điểm của AC
b) Chứng minh K thuộc đường thẳng EF.
c) Chứng minh rằng tứ giác ABCD là hình thang cân
Cho hình bình hành ABCD. Gọi o là giao điểm hai đường thẳng ac và bd. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M, N. Trên AB, CD lần lượt lấy các điểm P, Q sao cho AP = CQ. Chứng minh:
a) Các tứ giác AMNB, APCQ là hình bình hành
b) MP // NQ; MQ = NP
Cho hình bình hành ABCD. Gọi E; F và O lần lượt là trung điểm của AB; CD và BD. Gọi I và K là
điểm bất kì trên AD và BC.
a) Chứng minh AI song song CK. b) Chứng minh AE = FC.
c) Chứng minh A; O và C thẳng hàng.
Hình thang cân ABCD (AB // CD) có I là giao điểm của hai đường chéo, K là giao điểm của các đường thẳng chứa hai cạnh bên.
a) Chứng minh IC = ID.
b) Gọi H là giao điểm của các KI và DC. Chứng minh KH ⊥ DC, DH = HC
3) Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.a) Chứng minh: AMNC là hình thang, tính AC, biết MN = 3cm.b) Chứng minh: PQ ∥AC.c) Chứng minh: MN ∥PQ và MN = PQ.d) MQ = NP và MQ ∥NP.
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M,N lần lượt là trung điểm của AO và BO.
1/ Cho AB = 8cm ; BC = 10cm.
a/ Tính diện tính hình chữ nhật ABCD.
b/ C/m DMNC là hình thang cân.
2/ Giả sử AC = 2AD. Gọi E là giao điểm của tia CN và tia DM. C/m tứ giác ADOE là hình thoi.